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AERONAUTIC SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Sjmbol 

Metric English 

Unit Abbrevia- Unit Abbrevia- 
tion tion 

Length..--:-- 1 meter------------------- m  
Time-------- 
Force-------- k- 

second ____________ i--L- 
foot (or mile) _ ________ ft. (or mi.) 
second (or hour) _______ sec. (or hr.) 

weight of 1 ki logram- _ _ - - ki weight of 1 pound----- lb. 
.~ ., 

Power ____ ,..-- P horsepower (metric) _ _ _ _ _ _ l- _ - _ _ - - _ horsepower- _ __ _ _ _____ hp. 
-Speed --.----- V kilometers per hour---..-- m.p.h. 

meters per second------- 
k.p.h, miles per hour-1 ____ -_ 
m.p.s. ‘feet per second--- _ _r__ f.p.s. 

:- 2. GENERAL SYMBOLS - 

w, .’ Weight=mg 
9, : Standa.rd acceleration of ‘- gravity=9.80665 

-. _. _ m/s2 or 32.1740 ft./se&’ 
Iv 

m, Mass=_ 

I,’ Moment! of inertia=mk2. (Indicate axis of 
radius of gyration k by proper subscript.) 

cc? Coefficient of viscosity * 

y> 
Kinematic viscosity 

-. Density (mass per unit volume) 
&,andard density of. dry air, 0112497 kg-m-*-s* ,at 

15O c. and 769 mm; or 0.002378 lb.&.-’ set? 
Specific weight of “standard” air, 1.2255 kg/m3 -or 

0.07651 lbb./cu. ft. 

3. AERODYNAMIC SYMBOLS . 
-. . 

4 Area 
so, Areaofwing --I 
G  Gap 
b, Span . _ Chord 

*. ,;,, 
-_ 

s Aspect ratio 

v,. .- True air speed 1 . . 
P, Dynamic pressure=ZpT72 _- ,’ 

L, Lift, absolute coe5cient Q&=$ 

Angle of setting of wings (relative to thrust. 
line) 

Angle of stabilizer setting (relative to thrust 
line) 

Resultant moment 
_ 

Resultant angular velocity- 

Reynolds Number, where I is a linear dimension 
‘(e.g., for a model airfoil 3 in. chord, 100 
,m.p.h. normal pressure at 15’ C.; the cor- 
responding number is 234,000; or-for a model 
of 10 cm chord, 40 m.p.s., the corresponding 
number is 274,990) _ - ’ 

Center-of~pressure- coefficient (ratio of distance 
of-c.p. from leading edge to chord length) 

Angle of attack‘ 
Angle of downwash 
Angle, of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, a.bsolute (measured from zero- 

lift position) 
Flight-path angle 

- 

D, T. Drag, absolute coefficient -OD=-$ .‘. 
._~ ._ 

Do, DO Profle drag, absolute- coefficient OD,,=cB 

Dr, Induced drag, absolute coefficient CD*=:; _ 

Dm Parasite drag, absolute coefficient CDp=$ 

C, Cross-wind force, absolute coefficient Cc=% 

Resultant force 
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SUMMARY 

Unsteady-lijt junctions for wings of jinite aspect ratio 
have been calculated by correcting the aerodynamic inertia 
and the angle of attack of the infinite wing. The calcula- 
tions are based on the operational method. 

The starting lijt of the finite wing is found to be only 
sZightJy less than that of the infinite wing; whereas the 
jtnal lijt may be considerably less. The theory indicates 
that the initial distribution of lijt is simBar to the final 
distribution. 

Curves showing the variation of lijt after a sudden unit 
change in angle of attack,during penetration of a sharp- 
edge gust,and during a continuous oscillation are given. 
Operationcil equivdlants of these junctions have been devised 
to jc--G?itate the calculation of lift under various conditions 
of motion. As an application of these formulas, the 
vertical acceleration of a loaded wing caused by penetrating 
a gust has been calculated. 

INTRODUCTION 

The two-dimensional potential theory of airfoils in 
nonuniform motion was given by Wagner (reference 1) 
and has been extended to problems involving the motion 
of hinged or flexible airfoils by Theodorsen (reference 2) 
and Kiissner (reference 3). 

In the case of steady motion, a correction is known to 
be necessary before the results of the two-dimensional 
theory can be applied to wings of finite aspect ratio. 
A theory for the unsteady lift of finite wings was devel- 
oped in reference 4. This theory has since been some- 
what improved mathematically by making use of 
operational methods in the solution of the integral 
equations. (See reference 5.) The present report 
combines this previous work and extends the theory to 
show the effects of gusts. 

TiIE INDICIAL LIFT 
INFLUENCE OF THE WAKE 

Owing to the presence of circulation, the lifting wing 
leaves in its path a surface of discontinuity, the local 
vortex strength of which is determined by the rate of 
change of circulation taken both across the span and 
along the flight path. (See fig. 1.) The distribution 
of vorticity in the wake is determined by the assump- 
tion that the flow field at each instant conforms to the 

Kutta condition. An essential feature of the problem 
is the determination of the influence of this wake on 
the flow at the wing. 

It is important to note that the wake is supposed 
to remain plane and undistorted. As a consequence of 
this assumption, the effects of different wakes are 
additive, permitting the various flows to be built up by 
superposition. Thus, if the solution for the growth of 
the’increment of lift following a sudden change of nor- 
mal velocity-or, what amounts to the same thing 
under the assumptions involved, a sudden change in 
the angle of attack-is known, this solution may be 
used as the element in an integral that gives the lift in 
any variable motion. With this point in mind, atten- 
tion will at first be directed to the special case in which 
the wing starts suddenly from rest at t =0 with the 

-Storf 

F’IQUBE L-Flow caused by wing starting from rest. 

normal velocity w and the flight velocity U,, the 
velocities remaining constant thereafter. 

LIFT NEAR THE START 

The starting lift of any wing may be expressed by a 
simple theorem based directly on the Kutta condition. 
As a consequence of this condition, the portion of the 
wake adjacent to the trailing edge must move as an 
impermeable extension of the wing surface. Thus, the 
first element of wake formed must move with the same 
normal velocity as the wing. The flow produced at 
the first instant is what might be caused by the wing 
in process of growing wider at the rate 77, while moving 
lownward with the velocity w. The starting lift may 
then be thought of as the reaction to uniform motion 
If the wing as a body with increasing mass: 

dm’ L”W 

1 

II -. 
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where m’ is the mass representing the aerodynamic 
inertia of the wing in normal motion. 

In order to apply equation (1) to the finite wing, 
the inertia factor for such a wing must be known as a 
function of the width. Solutions for elliptic plates are 
given by the classical hydrodynamic theory, and these 
solutions can be used to represent approximately the 
initial rates of increase of inertia of wings of oval or 
elliptic plan form. 

The distribution of potential over each chordwise 
section of an elliptic plate in normal motion has the 
same form as the corresponding two-dimensional 
potential. Thus 

where E is the elliptic integral giving the ratio of the 
semiperimeter to the span. At the normal velocit\- 
w=E, the potential distribution over any chord is 
represented by a circle having the chord as diameter. 
(See fig. 2.) If the edge of the plate distorts into a 
slightly wider ellipse, the change in potential arising at 
any point will be measured by the difference betweer 
the original and the slightly expanded circles. (The 
change in the factor E during widening may be neg- 
lected for ordinary aspect ratios.) The pressure dif-- 
ference across the plate with changing potential is give11 
by the formula 

p=-zp TJ* ( OdX +%) (3) 

FIGURE Z.-The wake and the distribution of potential over the chord shortly after 
the start. 

For w=E 
+=-Jl--z’=sin 9 (4) 

~=~--cot 
-X 

e 
ax &-x2 

and, from the geometry of the circle, 

ad - at ,,o=bac dt [=O I 
&#I .dAc =U?!k 

‘bAc AC=O 
= U,;cot; (5) 

The pressure across the plate with the normal velocity 
w=E and the flight velocity U, is, therefore, 

Ql,o=puO 2 C0.t e-Cot i 
>  

02 

Integration of this pressure over any section gives the 
lift coefficient, for angle of attack Q! of the plate, 

(7) 

with each local center of pressure at the quarter-chord 
point. 

The start of the plane elliptic wing being equivalent 
to a uniform lengthening of each chord, the true elliptic 
outline is not preserved. Such a change, however, may 
be shown to conform very nearly to ‘a change into 
another, slightly larger, ellipse at all points except those 
very near the tips. Furthermore, if the wing is assumed 
to distort in any of a number of ways into a slightly 
different elliptical plan form, the change of aerody- 
namic inertia will be’found to be but little affected by 
the change in shape and to depend primarily on the 
over-all change in size. Each such distortion can be 
thought of as representing a certain distribution of the 
starting velocity U around the edge of the wing. 
Equation (5) is exact for all distortions of this class. 
Inasmuch as they may be made to fall on either side of 
the distortion represented by U=constant (represent- 
ing the start of the rigid wing), the equation is also 
considered applicable to this case. 

THE DOWNWASH CORRECTION 

A reasonably accurate curve of the growth of lift 
might now be drawn by connecting the starting value 

Transformed flow 

FIGURE 3.-Element of circulatory flow. 

Iequation (7)) asymptotically to the known steady 
value given by the Prandtl theory. Calculations have 
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shown, however, that, after the wing has progressed a 
distance of the order of one semispan, the effect of 
finite width of the wake can be treated simply as a 
modification of the angle of attack of the entire wing, 
as in the steady-lift theory. A closer approach to the 

. ~- .,true form of the curve may be obtained by proceeding 
on this basis. 

Before the three-dimensional problem is considered, 
it will be helpful to review certain aspects of the two- 
dimensional theory (reference 1). In order to make 
the analysis nondimensional, all velocities are expressed 
in terms of the flight velocity U. and all lengths, in 
terms of the half chord. 

Figure 3 shows the elementary two-dimensional flow 
used as a starting point by Wagner (reference 1). 
This tlow is caused by two vortices, representing, re- 
spectively, an element of circulation around the wing 
and the vortex left in the wake when this circulation 
originated. The stkeamlines of this flow are eccentric 
circles. One such circle (of unit radius) is chosen to 
represent the wing section and the axes are so placed 
that this circle has its center at the origin. The geom- 
etry of the resulting pattern is such that, when the 
wake vortex is at z, the wing vortex will be at l/z. 
This spacing preserves the unit circle as a streamline 
of the flow. 

Transformation of the pattern by the formula 

2~a+; (8) 

flattens the unit circle into a thin-line wing section and 
distorts the originally circu1n.r streamlines into oval 
Joukowski figures. The transformed pattern thus rep- 
resents the circulatory fiow around a flat wing section 
with an associated countervortex in the wake. In the 
transformation, the centroid of wing vorticity remains 
at the position of the original bound vortex while the 
wake vortex is shifted forward somewhat as shown 
m. 3). 

Each elementary flow of the type shown contributes 
a certain velocity around the trailing edge of the airfoil. 
The flow due to an instantaneous change of angle of 
attack of the airfoil may be superposed on these flows 
and will contribute a trailing-edge velocity of opposite 
sense. On this basis, the problem of circulation with 
varying angle of attack may be solved by an inverse 
procedure. Assume some convenient distribution of 
wake vorticity and calculate (by integration) the trail- 
ing-edge velocity at each point along the flight path 
corresponding to the prescribed wake. The particular 
variation of angle of attack necessary to cancel this 
trailing-edge flow at each instant (Kutta condition) can 
then be determined. If a number of such curves are 
found, they may be added in various ratios so as to 
approximate some prescribed variation of angle of 
attack; the corresponding circulation curves are added 
in like ratios. 

In essentially the manner described, Wagner (refer- 
mce 1) calculated the two-dirnetisional flow -around a 
wing section following a sudden glit change in angle of , 
attack. The integrated pressures over the airfoil give 
a lift coefficient that asymptotically approaches the 
known steady value, 2n; whereas the starting lift 
coefficient is found to be exactly one-half this value. 
The center of pressure remains at the quarter-chord 
point throughout the motion. 

In the case of the finite wing, an element of the wake 
will be as depicted in figure 3 but will, in addition, 
contain vortices completing each circuit to the wing 
through the tips. The length of the tip vortices may 
be approximated by assuming that they extend to the 
chordwise centroid of the wing circulation. After some 

I 
0 I.0 

FIGURE 4.-Position of the centroid of discontinuity in the wing for different positions 
of the wake vortex. 

calculation, the equivalent length z of the tip vortices 
in terms of the distance traveled s reduces to 

+/s(sf2) (0) 

Figure 4 illustrates the rapid travel of the centroid of 
discontinuity within the wing subsequent to its initial 
position at the trailing edge.’ It is seen that, after a 
travel of several chord lengths, the centroid may be 
taken at the middle of the wing section. This assump- 
tion will later be used. 

Figure 5 shows how an elementary loop vortex in the 
wake of a finite wing can be formed by cancelation from 
an element of the wake of an infinite wing. The 
downwash induced by segments CD and F H accounts 
for the aspect-ratio effect. Since a uniform distribu- 
tion of the downwash flow is assumed, the calculations 
will be restricted to the center of the wing. By the 
application of Biot-Savart’s rule, the downwash velocity 
due to elements CD and FH is found to be 

1 
;7. K ) 

4-p 1-- 
y x Jx’+y2 x 1 

This expression for downwash may be integrated in 
1 At s=O, the tip vortices arc lengthening at an infinite rate and. although the vortex 

strength is zero at the beginning of the motion, the limiting calculation shows that the 
induced downwash flow has a certain rate of acceleration at this instant. As a result, 
the starting lift of the finite wing is diminished, in accordanm with the result of the 
previous ealoulation. 
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.--:I 
FIGURE 5.--Superposition of vortices to obtain finite loop. 

the caie of elliptic spanwise loading. Let y represent 
the circulation around any chordwise section; then 

y=r sine (11) 

b where y=2 cos 8, and r is the value of y at the center 

section. 

y’+z’=($)?[l+(&)?] (I-k%in?9) (12) 

where k2= 
1 

1+ $2 ( >? 

Then the induced velocity due to a’series of finite loops 
of the form CEF (fig. 5) is given by 

=$(&kK(k) +v[K(k)( k;)+ y]l 

where K jk j and E: (k) are the complete elliptic integrals. 
(See Peirce’s table.) 

Subtracting the two-dimensional vortex E gives the 
effect of a series of segments of the form of DC and FH, 
distributed along the span according to the elliptic 
loading. 

Figure 6 shows the variation of downwash velocil,v 
with increasing length of the wake as determined by 
this formula. Some additional rough calculations have 
shown that the downwash becomes practically uniform 
over the entire wing before the wake has attained a 
1engf.h of one semispan. 

Figure 7 shows downwash curves derived from equa- 
tion (14) for elliptic wings of aspect ratios A of 3 and 6. 
In this derivation, the unit of length was taken as half 
the central chord of the wing. Thus, the wings have 
the same chords (cmaz= 2) but are of different spans. In 

a 
L ertgfh of wake, semispuns 

FIGURE &-Growth of downwash with increasing length of the wake. r,=l.O; 
elliptical span load. 

order to defke the later portions of the curve, the wake 
was assumed to start with length equal to the mean 
chord b/A in each case. This assumption, though 
somewhat arbitrary, makes allowance for the curvature 
of the trailing edges of the wings. 

.08 

0 2 4 6 8 IO I2 I4 
s , half chords 

FIGURE 7.-Downwash functions, w r(s). 

The induced downwash wi with any variation of 
circulation I’(s) along the flight path may be deter- 
mined from the curves given in figure ‘7 by superposition; 
thus 

w*&)=wr(Sjrdo)+ 
s 

oS~r(~-~o)~~~(~o~d~o (15) 

The growth of circulation following a sudden start of 
the mot,ion will be determined from the two-dimen- 
sional t,heory by using the efiectivc normal velocitg 

II), =‘I/., --ILli== I-711, (IQ 

Lcl; I’“?” bc the rise of circulation following a sudcleil 
start with mlit normal velocity as given by the two- 
dimensional theory. Then, for the finite wing, 

r,(S)=rolO(S)-rrOw(S)Wi(0)- 
I 

SIlo,~(G-~So)lUi’(.s~)dsa (17) 
, II 

The determination of the effective normal velocity 
md the circulation for the finite wing thus depends on 
the simultaneous solution of integral equations (15) 
tnd (17). This solution may be conveniently obtained 
my operational methods. 

. 
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OPERATIONAL SOLUTION OF INTEGRAL EQUATIOd.3 

Let D represent the operator d/ds and let l=l (s) 
represent the unit jump function, that is, a function of 
s having the value zero at s<O and having the value 
1 at s>O. A function of s may be represented by a 
combmatioh’of ko@rations on the unit jump function 

*(sj&i(D)l (18) 

’ The combination of operations $(D) necessary to 
reproduce the function (a(s) ,is called the operational 
equivalent of the function @p(s). 

Rules for finding such equivalents are discussed in 
reference 6. The most general rule for proceeding 
either from 5 to a’, or vice versa, is: 

The rule needed in the following development is 
the Heaviside expansion theorem: 

where f and F are algebraic polynomials and the X’s 
are the roots of F(X)=O. 

The operational treatment of integral equations is 
based on the proposition that an integra.1 of the form 
of (15) may be regarded as the linear superposition of 
t,he effects of a succession of small jump functions. 
The operational form of (15) is 

G,(D) =wr (D)rtc (D) 
and that of (17) 

f;,(D)=r,,(D)[l-~(l~(D)l 
Solving algebraically for w,, (D): 

(20) 

(21) 

(22) 

The induced velocity W<w(S) gives the variation of 
the effective angle of attack of the finite wing when the 
geometric a,ngle of attack is held constant. The lift at 
later stages of the motion is then found by combining 
the effective angle-of-attack vnrin,t,ion 

The operational equivalents i!ow(D>, G,,(D), etc., 
ire easily written down from (26). The substitution 
If these equivalents into equations (22) and (25) and 
\he evaluation of the resulting operators by the Heavi- 
side expansion theorem are quite lengthy and will not be 
:eproduced. The resulting expressions for CLol(s) 
uerc found to bc 

TJI,:, (S) z.1 -Wire (,T) (23) 
with .tho two-dimensiona, indicial-lift function given 
by Wa.gner. Let CLOlo(s)=CLOa(s) be the lift in two- 
dimensional flow following a sudden unit jump of angle 
(the curve given by Wagner is for CY= 1/2rr) ; then, for 
the finite wing: 

c ‘I,,,” 1 =a[l.2~S-o.1g(~e-“.““‘S I.().OT,T,e--“.:““‘” 
-(-0.043e-2~~71”-~-0.915e~“~‘!‘“” cos 0.0’$6(s--19.135)] 

GuA=o =rr[1.5S~-00.242e-0.“‘““-00.403e-0.30~~ 

: 

cw 
-~-0.00Se~1~““S”-(-0.872e~0~2”1Scos0.0724(s-21.117)] 

Because the curves giver1 by these formulas are 
considered invalid near the start of the motion, new 
curves having the correct starting values given by‘ 
equation (7) were drawn in as shown (fig. 9). These 
final curves have the useful approximate expressions: 

C,,(~)=~~,~(~~-G,,(~)W~,(O)-~~~,,(~-~~)w~,’(s~)ds~ (2 ( LmA-3 s)=1.200a(l.000-0.283e-0~5405 > 

(24) C~LI~=((~)~l.481r(1.000-0.361e-0~3*’s) 1 
(29) 

)r, in operational form: 

-G,(D) =Go,m 40. m&m (25) 

krbstitution of the expression for G,(D) from equation 
:22) gives the operational form of the lift function for. 
;he finite wing in terms of the known functions 

w(s), row(s), and Goa@) 

Because no concise expressions of the required func- 
tions are known, approximate formulas must be devised. 
The function eXs has a simple operational equivalent, 
lamely, 

D eXS=ml (26) 

and, since the curves to be fitted are asymptotic in 
character, series of such functions were chosen as 
Follows: 

~0,(s)=5.75-3.75e-0~23g5-1.50e-1~g70a 
CLOG(s) =2r-0.330.rre-0.045s- 0.670?re-0.300s 

w~(s)n,~=0.006-0.053ec0~281S 
1 

(27) 
w~(s)A,5=0.045-0.032e-0~203s 

Figures 7 and 8 show the degree of exactness attained 
with these expressions. It was considered not im- 
portant to fit the curves accurately near the origin. 

0 2 4 6 8 10 I2 14 
9, half dm-d. 

FIGURE 8.-Growth of circulation in two-dimensional flow, I’D,(S). 
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An analogous expression for infinite aspect ratio is 

CL0~(~)=21r(1.000-0.165e-004SS-0.335e-o~3~S) (30) 

0 2 4 6 8 IO 12 f4 
s , ho/f cfm-ds 

FIGURE 9.-Indicial lift functions, CL&) and CL.(S). 

LIFT IN VARIABLE MOTION 

In addition to the lift given by the lift function 
CL,(s), the airfoil experiences a reaction equal to the 
insCantaneous rate of change of the norma.l-velocity 
component times the virtual additional mass of the 
wing in normal motion. In coe&ient form: 

(31) 

Furthermore, if the wing is rotating in pitch, the effect 
of an additional relative camber is introduced. A 
simple integration, making use of well-known results 
of thin-airfoil theory, shows 

where the factor 1 is )$ for a straight rectangular wing. 

For the elliptic wing, a >I> zt approximately, being 

somewhat smaller than X because the rotat,ion intro- 
duces a smaller relative c,amber at the narrower sections 
toward the tip. 

The effects of combined vertical motion 
( > 

CX=~ 
0 

aud rotation (cx=~) may be conveuiently treated by the 
use of moving axes as shown in figure 10. With these 
points in mind, tne following operational formula for 
the total lift. may be derived: 

c,(s)=~I)o((s)+c~,~D)~cr(s)+1DB~s)l (33) 

u, * (0 

-s 617 
JI 
W 

FIGURE lO.-Moving BXBS, a=Wl L’o. 

LIFT FUNCTIONS FOR AN OSCILLATING AIRFOIL 

The lift in sinusoidal motion where 

a=eins and 0=0 

is given by 

C~,(S)=$imP+T7L,(D)eins 

Since 

(34) 

(35) 

D 
eies=-l 

D-m 

c,.(D)P”=&(D)&n~ (36) 

Expansion of this operator gives, with the exception of 
transient terms, 

C,,(s) =CL, (in) eins (37) 

The function Ea (. ) zn corresponds to the lift func- 
tion C(n) introduced by Theodorsen (reference 2) for 
the oscillating two-dimensional airfoil, that is, in 
Theodorsen’s terminology 

??L,(in) =27rC(n) =27@(n) +iG(n)] (38) 

‘The expressions for F+iGfound from the operational 
equivalenQs of (29) are: 

(F+iG).~~,=0.600-0.170~n~; 540 
\ 

.t 

(F+i@,I=,=0.740-0.267in;;351 
1 (39) 

I 

Figure 11 shows these functions plotted against the 
wave length 2a/n of the oscillation. 

0 10 50 60 

TIGURE Il.-Oscillating-lift functions, &,(in)=Sr(F+iG) and?~;(in)=P+iQ 

Relation (37) is especially interesting (see reference 
7) because it shows a connection between the Fourier 
md the operational analyses. Thus, if the response of 
I linear system to a continuous sinusoidal excitation is 
inOWIl, 

B,(s) =j(in)eirh8 (40) 

;hen, the function f immediately furnishes the opera- 
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tional equivalent of the unit response so that, for any 
variable excitation z (8) , 

R(s)=f(D)z(s)=f(D)&I)1 (41) 
LIFT IN GUSTS 

---; The foregoing cdcuGt&s provide the basis for the 
determination of lift under any prescribed conditions 
.of motion of the wing. These results may also be used 
in conjunction with the equations given by Theodorsen 
(reference 2) to predict the air forces on wings with 
hinged flaps. 

In all cases treated, the airfoil has been considered 
as moving in air that would otherwise be at rest. An- 
other problem of considerable interest is the prediction 
of lift during passage of the airfoil through gusts. 
The two-dimensional theory for this case was developed 
by Eiissner (reference 3) and has since been corrected in 
certain details by von Kdrman and Sears (reference 8). 

The basic solution required in the gust problem is 
the solution for a unit sharp-edge gust of uniform up- 
ward velocity. In order to obtain this solution, it is 
useful to substitute for the change in direction of the 
relative air velocity an equivalent fictitious bending of 
the airfoil in still air such that it has at every point an 
angle of attack equal to the angle that would otherwise 
be produced by the gust. 

The effect of a bend progressing along the chord of 
the airfoil may be calculated by thin-airfoil theory 
(reference 9, chs. III and IV). A part of the effect 
appears as a change in angle of attack of the airfoil as 
a whole, namely: 

Aa,= l- cos-'(S-l)+JS(2-~) 
7r (42) 

The corresponding part of the lift is obtained from the 
indicial-lift function CL,(s) by superposition. In 
addition, a reaction caused by acceleration of the non- 
circulatory potential flow exists during the time the 
airfoil is partly immersed in the gust. In two-d imen- 
sional flow, the additional reaction is 

AcLo=2&(2-s) (43) 
No corresponding expression for the finite wing is 

known, but it may be reasoned that the maximum cor- 
rection will be no greater than that indicated by the 
inertia factor of the rigid elliptic disk, l/E. Hence, the 
formula 

ACLg=-&ls(2-s) (44) 

was used for the finite wingsas an approximation. 
The consideration of wings with curvature or sweep- 

back introduces another difficulty into the analysis, 
since the sections of such wings will not strike the edge 
of the gust simultaneously. It is obviously impractical 
to attempt to include in the analysis the effects of the 
many possible variations of plan form, and the calcula- 

1sos17-4~2 

tions were therefore made on the assumption that all 
sections entered the gust simultaneously. Such an 
analysis may be considered sufficiently exact for the 
usual variations of plan form but is, of course, not ap- 
plicable to wings with considerable sweep. 

Figure-9 shows the functions, designated CLg (s), thus 
calculated. These curves have the useful approximate 
expressions: 

f&,(~)~=~=1.200a(1.000-0.679e-~~~~~~-0 227e-3.ms)' 
C&(S).~=~= 1.500a(l.000-0.448e-0~~00S ' 

-0.272e-0~~25~-0.193e-3~~~)~(45) 
CLg(~)A=~=2.000~(1.000-0.236e-0~058s 

-()513e-0.384S-()171e-z.4z8) 

As in the case of the functions CL,(s), the exponential 
forms were used to give simple operational equivalents. 
The operational equivalents of the indicial-gust func- 
tions, CL,, give directly functions determining the al- 
ternating lift of a stationary wing in an oscillating air 
stream. Thus 

C,(s) =iTLp (in)e tns= [P(n) +i&(n)]etns (46) 

Figure 11 shows these functions in comparison with the 
corresponding functions for the oscillating airfoil. 

2x 

0 2 4 6 8 IO 12 I4 
s , ho/f chords 

FIG~E la.-Variation of thelift during passage through unit sharp-edge gust. A=6. 

MOTION OF AIRPLANE IN GUST 

In most problems that arise in practice, the motion 
of the airfoil, or airplane, will not be prescribed before- 
hand but must be determined from dynamical equa- 
tions. The rising motion of an airplane (or, as it shall 
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be considered here, a loaded wing) while entering I 
sharp-edge gust presents such a problem and will be usec 
to illustrate the application of the operational formulas 

The dynamical equation for this case (neglect& 
pitching motion) is: 

ClW ma+resisting force=impressed force (47: 

where the impressed force is that part of the lift caused 
by the gust.- Since 

dw U; da -=- - 
dt c/2 ds 

dw 2m p c Uo2 da da 
mZ=;-cZ 2 c/2 ds - - -=psgJo2-& 

2 

0 40 80 I20 I60 200 240 2 GG , 
Airplane density radio, /I =  Zm/S$ 

FIQURP 13.--Maximum-lift increments developed in flying through a unit sharp-edge 

(4% 

where cu, is the change in angle of attack represented by 
the gust. 

For a unit sharp-edge gust, a,=1 ; then (solving 
for LY), 

cr(s) = CL, CD) 
fiD+&(O ’ (50) 

By the use of the approximate expressions given for 
CL, and CL9 (equations (29) and (45)), thisoperator may 
be reduced to the form (19). 

Figure 12 shows the lift coefficient C,(s)=pDa!(s) 
computed from equation (50) for several values of the 
density ratio p and for A=6. Figure 13, derived from 
similar calculations, gives maximum lift loads attained 
in the sharp-edge gust as functions of the relative 
density. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., June 15, 1959. 
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